
6.270 CVS Lecture

IAP 2001 1

6.270 CV S Lecture - IAP 2001 1

6.270 CVS Lecture

• The 6.270 Locker

• CVS

6.270 CV S Lecture - IAP 2001 2

The 6.270 Locker

• % add 6.270

• % cd /mit/6.270/Teams/nn

• Put “add 6.270” in ~/.environment

6.270 CV S Lecture - IAP 2001 3

CVS!
(Concurrent Version System)

• Everything you really need to know is at
http://www.loria.fr/~molli/cvs/doc/cvs_toc.html
It’s linked to from the 6.270 Contestant Info page.

6.270 CV S Lecture - IAP 2001 4

Why CVS?

• Multiple users want to edit the same files.

• CVS handles merging changes, even to the
same file.

• CVS is no replacement for management!

• CVS keeps track of older versions

• CVS is no replacement for management!

6.270 CV S Lecture - IAP 2001 5

CVS: Basic Concept

• Repository: Where condensed versions of
every version of your files are kept.

• You don’t work from the repository.
Rather, you work from a “checked out”
copy.

• In fact, you should never manually touch
anything in the repository.

6.270 CV S Lecture - IAP 2001 6

CVS: What’s in a repository?

• Source files

• Makefiles

• maybe some text documentation

• NOT object files, and other binaries or
executables.

6.270 CVS Lecture

IAP 2001 2

6.270 CV S Lecture - IAP 2001 7

CVS: Sample Usage

1) Create a repository (done once)

2) Do a checkout (done once per user)

3) Add/Edit a file

4) “Update” your checked out files

5) “Commit”, aka “Check In”, a file

6) Go away for a while

7) Update again and return to step 3
6.270 CV S Lecture - IAP 2001 8

How CVS Works (Roughly)

• Uses “diff” to find difference between files.
Thus, it only works well on line-based text
files, not binary files.

• Uses various algorithms to figure out how
to merge differences.

• Sometimes fails! You’ll have to merge
changes manually in those cases.

6.270 CV S Lecture - IAP 2001 9

CVS: Creating a Repository

• % setenv CVSROOT /mit/6.270/Teams/nn/repository

• % cvs init

• cd to your working directory. We suggest that you create a
set of /mit/6.270/Teams/nn/<username> directories to
work from.

• % mkdir Robot; cd Robot
(You’re now in <workingdir>/Robot)

• % cvs import -m "Creation" Robot teamnn start

• % cd ..

• Do a checkout

6.270 CV S Lecture - IAP 2001 10

CVS: Before you use

• CVS is in the gnu locker:

• % add gnu

• You might want to put “add gnu” in your
~/.environment file

6.270 CV S Lecture - IAP 2001 11

CVS: Note on repository creation

• The Robot directory is called a “module”.

• The “teamnn” and “start” parameters to “import” are just
info tags and can be arbitrary, but must be there.

• When you use the import command, any files in that
directory will automatically be imported into the module
after it is created. If your directory is empty, the module
will simply be created.

• If you choose to import your previous files en masse in this
way, be sure to make clean, i.e., clear your directory of all
binary/class files and tool-generated .java files, before
running import.

6.270 CV S Lecture - IAP 2001 12

CVS: Checking Out a Repository

• You only need to do this once per user.

• % setenv CVSROOT /mit/6.270/Teams/nn/repository

• cd to your working directory

• % cvs co Robot

• % cd Robot

• Work from within this directory

6.270 CVS Lecture

IAP 2001 3

6.270 CV S Lecture - IAP 2001 13

CVS: Updating your files

• First cd to the directory with your files.

• % cvs update

• To get new subdirectories, use
% cvs update -d

• If you get a merge conflict, you’ll have to
resolve it manually. Delete the version you
don’t want.

6.270 CV S Lecture - IAP 2001 14

CVS: Adding and Committing

• Create the file or subdirectory.

• % cvs add <filename>

• % cvs ci -m “message” <filename>

• Use commit after adding or editing a file.

• Omitting the filename commits everything
(recursively).

• Not using -m prompts you for a message.

6.270 CV S Lecture - IAP 2001 15

CVS: When to Commit?

• No hard and fast rule.

• General rule of thumb:
Make sure everything compiles before you check in.
There’s nothing more annoying than having your code
cease to compile after checking out other someone else’s
changes.

• There are special exceptions.

6.270 CV S Lecture - IAP 2001 16

CVS: Removing a file

• % rm <file>

• % cvs rm <file>

• % cvs commit <file>

• Note the sort of odd ordering (which
prevents you from using tab-completion)

6.270 CV S Lecture - IAP 2001 17

CVS: Removing a subdir

• Remove everything (and from CVS) inside
the subdir. Now, from its parent directory,
% cvs update -P

• That will get rid of any empty subdirs.

6.270 CV S Lecture - IAP 2001 18

CVS: Diffing

• Show log:
% cvs log <file>

• Differences from repository:
% cvs diff <file>

• Differences from some version:
% cvs diff -r<version> <file>

• A different display style:
% cvs diff -u <file>

6.270 CVS Lecture

IAP 2001 4

6.270 CV S Lecture - IAP 2001 19

CVS in Emacs

• C-x,v, v = Commit

• C-c, C-c after entering a comment.

• See C-x,v,C-h for a list of relevant
commands.

6.270 CV S Lecture - IAP 2001 20

CVS: And More

• Tagging and branching allows you to set
checkpoints and such. See the French page
for more information.

6.270 CV S Lecture - IAP 2001 21

How to use CVS well!

• CVS is no replacement for management!

• Minimize working on the same file at the
same time.

• If you do, work on different portions.

• You may want to use lots of auxiliary files
for different functions instead of one mondo
file. (This may be more relevant in general
than for 6.270 in particular.)

6.270 CV S Lecture - IAP 2001 22

CVS Pitfalls

• Never muck with the repository manually.

• Try not to make drastic changes at once.

• Always update before editing. Managing
conflicts earlier is easier.

• Watch out for emacs auto-tabbing.
Different versions sometimes tab
differently. CVS doesn’t like to merge a
retabbed file.

