
6.270 Lecture

Steven Jorgensen

Massachusetts Institute of Technology

January 2014

Control Systems

Overview of Lecture

 Feed Forward Open Loop Controller

 Pros and Cons

 Bang-Bang Closed Loop Controller

 Intro to PID Closed Loop Control

 Proportional Control

 Proportional-Integral Control

 Proportional-Derivative Control

 Proportional-Integral-Derivative Control

 Personal Tips and Suggestions

Feed Forward / Open Loop Controller

 Room Lightswitch

 Water Faucet

 Time Based Toaster

Examples

 Set Stock Servo Motor Position

 Setting PWM on motor

Robot Examples

Feed Forward / Open Loop Controller

 Given a reference input, multiply it by a gain, K.

 Apply controller output to robot

K Robot

u(t) y(t) r(t)

r(t) – Reference Input (eg: Voltage, Desired Angle/Speed)

K – Gain (Some Units)

u(t) – Controller Output

y(t) - Plant Output (eg: Actual Angle/Speed)

Feed Forward / Open Loop Controller

 Pros

 Simple to Implement

 If everything is known, controller can be reliable

 Cons:

 Robot does not know if the desired output is reached

 Not robust under variable loading

K Robot

u(t) y(t) r(t)

Bang-Bang Closed Loop Controller

 Example: Thermostat (ON until warm temperature is reached)

 Sensor Information Dictates Action

 Not good for navigation

Is There

yet?
Output

u(t) y(t) r(t)

Sensor

u(t) – On/OFF

Closed Loop Control: Proportional Controller

 Use sensor information to dictate action

 Use negative feedback to minimize error e(t)

e(t) r(t) y(t)

K Robot
u(t) y(t) r(t) e(t)

Sensor

+

_

Proportional Controller Example

 Suppose we want a robot to turn to a particular angle

r(t) desired

y(t) actual

e(t) desired actual

u(t) k(desired actual)

K Robot
u(t) y(t) e(t)

Sensor

+

_

actual

desired

actual

desired

Proportional Controller Example
 Remember, we are trying to minimize e(t). Suppose k = 10

 As error increases, u(t) puts more effort to achieve desired angle

 As error decreases, u(t) puts less effort to achieve desired angle

e(t) desired actual

u(t) k(desired actual)

actual

desired

actual

desired

actual

desired

e (0 /4)

u 10(/4)

u 10(/6)

Issues with Proportional Controller

 Tuning the gain K:

 We want high K to reach desired output but…

 K can’t be too “stiff” (Overshoots like an undamped spring)

 K can’t be too “soft” (K is too small to move the robot)

 Thus, desired output is never reached

u(t) k(desired actual)

u(t) kx

actual

desired

Looks like Hooke’s Law…

Proportional-Integral (PI) Controller

 “Integral” Essential Concept: Accumulate all error and

get rid of it

 Add a integral term to get rid of error

u(t) kpe(t) ki e(t)

Kp

Robot
u(t) y(t)

r(t)
e(t)

Sensor

+

_

+ Ki

PI Controller Example

 “Integral” Essential Concept: Accumulate all error and
get rid of it

 Integral will accumulate both positive and negative error

 This slowly disappears given appropriate values of ki

u(t) kpe(t) ki e(t)

actual

desired

PI Controller Issue

 Integral term can wind up forever.

 Suppose robot wants to reach a certain desired angle, but
something is blocking it.

 What happens to integral term? How might you solve this?

u(t) kpe(t) ki e(t)

actual

desired

Proportional-Derivative (PD) Controller

 “Derivative” Essential Concept: If controller didn’t
change fast enough, apply some extra effort

 Add a derivative term to act as a damper

u(t) kpe(t) kd
d

dt
e(t)

Kp

Robot
u(t) y(t)

r(t)
e(t)

Sensor

+

_

+ d/dt Kd

PD Control Example

 Suppose you are making a line-follower robot:

 Consider two types of Kp…

Sharp Turn has no P-Controller

Solution/

Low Kp – Robot misses turn

High Kp – Overshoots and misses next line

PD Control Example

 Problem: We want a really high Kp to reach desired output

 Issue: Robot Overshoots

 Using “D-controller” as Damper

u(t) kpe(t) kd
d

dt
e(t)

actual

desired

Solution: Use “D” on top of “P”

Image from wikipedia: https://en.wikipedia.org/wiki/File:Change_with_Kd.png

https://en.wikipedia.org/wiki/File:Change_with_Kd.png

Complete PID Controller

 P – Proportional (Spring) term to reach goal

 I – Integral term to remove residual error

 D – Derivative term to add damping

u(t) kpe(t) kd
d

dt
e(t) ki e(t)

Kp

Robot
u(t) y(t)

r(t)
e(t)

Sensor

+

_

+ Ki

d/dt Kd

Complete PID Tuning

 Do this smartly.

 Start with only P. Increase P until it Oscillates

 Include D until the system is critically damped (no oscillation)

 Include I to remove residual

For more tips on PID tuning check:

 Ziegler-Nichols Tuning Method

https://en.wikipedia.org/wiki/Ziegler%E2%80%93Nichols_method

https://en.wikipedia.org/wiki/Ziegler%E2%80%93Nichols_method

Personal Tips/Suggestion

 Robot has inherent damping

 Don’t bother with D

 Design with tolerances in mind

 Don’t bother with I.

 In most cases I is overkill for simple applications

 P-Control is good enough.

 Tune P controller using potentiometer (frob knob) as gain

K Robot
u(t) y(t) r(t) e(t)

Sensor

+

_

0 100

Kp=

