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Overview of Lecture 

 Feed Forward Open Loop Controller 

 Pros and Cons 

 Bang-Bang Closed Loop Controller 

 Intro to PID Closed Loop Control 

 Proportional Control 

 Proportional-Integral Control 

 Proportional-Derivative Control 

 Proportional-Integral-Derivative Control 

 Personal Tips and Suggestions 

 

 

 

 

 



Feed Forward / Open Loop Controller 

 Room Lightswitch 

 Water Faucet 

 Time Based Toaster 

 

Examples 

 Set Stock Servo Motor Position 

 Setting PWM on motor 

 

Robot Examples 



Feed Forward / Open Loop Controller 

 Given a reference input, multiply it by a gain, K. 

 Apply controller output to robot 

K Robot 

u(t) y(t) r(t) 

r(t) – Reference Input     (eg: Voltage, Desired Angle/Speed)  

K   – Gain         (Some Units)      

u(t) – Controller Output     

y(t) -  Plant Output     (eg: Actual Angle/Speed) 

 



Feed Forward / Open Loop Controller 

 Pros 

 Simple to Implement 

 If everything is known, controller can be reliable 

 Cons: 

 Robot does not know if the desired output is reached 

 Not robust under variable loading 

K Robot 

u(t) y(t) r(t) 



Bang-Bang Closed Loop Controller 

 Example: Thermostat (ON until warm temperature is reached) 

 Sensor Information Dictates Action 

 Not good for navigation 

 

 

 

Is There 

yet? 
Output 

u(t) y(t) r(t) 

Sensor 

u(t) – On/OFF 



Closed Loop Control: Proportional Controller 

 Use sensor information to dictate action 

 Use negative feedback to minimize error e(t)  



e(t)  r(t)  y(t)

K Robot 
u(t) y(t) r(t) e(t) 

Sensor 

+ 

_ 



Proportional Controller Example 

 Suppose we want a robot to turn to a particular angle 

  

 



r(t) desired

y(t) actual

e(t) desired actual

u(t)  k(desired actual)

K Robot 
u(t) y(t) e(t) 

Sensor 

+ 

_ 



actual


desired



actual



desired



Proportional Controller Example 
 Remember, we are trying to minimize e(t). Suppose k = 10 

 As error increases, u(t) puts more effort to achieve desired angle 

 As error decreases, u(t) puts less effort to achieve desired angle 

  

 



e(t) desired actual



u(t)  k(desired actual)



actual



desired



actual



desired



actual



desired



e  (0  /4)



u 10( /4)



u 10( /6)



Issues with Proportional Controller 

 Tuning the gain K: 

 We want high K to reach desired output but… 

 K can’t be too “stiff” (Overshoots like an undamped spring) 

 K can’t be too “soft” (K is too small to move the robot) 

 Thus, desired output is never reached 

 

 



u(t)  k(desired actual)



u(t)  kx



actual



desired

Looks like Hooke’s Law… 



Proportional-Integral (PI) Controller 

 “Integral” Essential Concept: Accumulate all error and 

get rid of it  

 Add a integral term to get rid of error 



u(t)  kpe(t) ki e(t)

Kp 

Robot 
u(t) y(t) 

r(t) 
e(t) 

Sensor 

+ 

_ 

+ Ki 



PI Controller Example 

 “Integral” Essential Concept: Accumulate all error and 
get rid of it  

 Integral will accumulate both positive and negative error 

 This slowly disappears given appropriate values of ki 



u(t)  kpe(t) ki e(t)

actual



desired



PI Controller Issue 

 Integral term can wind up forever. 

 Suppose robot wants to reach a certain desired angle, but 
something is blocking it. 

 What happens to integral term? How might you solve this? 



u(t)  kpe(t) ki e(t)


actual



desired



Proportional-Derivative (PD) Controller 

 “Derivative” Essential Concept: If controller didn’t 
change fast enough, apply some extra effort 

 Add a derivative term to act as a damper 



u(t)  kpe(t) kd
d

dt
e(t)

Kp 

Robot 
u(t) y(t) 

r(t) 
e(t) 

Sensor 

+ 

_ 

+ d/dt Kd 



PD Control Example 

 Suppose you are making a line-follower robot: 

 Consider two types of Kp… 

Sharp Turn has no P-Controller 

Solution/ 

Low Kp – Robot misses turn 

High Kp – Overshoots and misses next line 



PD Control Example 

 Problem: We want a really high Kp to reach desired output 

 Issue: Robot Overshoots 

 Using “D-controller” as Damper  

 



u(t)  kpe(t) kd
d

dt
e(t)



actual



desired



Solution: Use “D” on top of “P” 

Image from wikipedia:  https://en.wikipedia.org/wiki/File:Change_with_Kd.png 

 

https://en.wikipedia.org/wiki/File:Change_with_Kd.png


Complete PID Controller 

 P  – Proportional (Spring) term to reach goal 

 I   – Integral term to remove residual error 

 D – Derivative term to add damping 



u(t)  kpe(t) kd
d

dt
e(t) ki e(t)

Kp 

Robot 
u(t) y(t) 

r(t) 
e(t) 

Sensor 

+ 

_ 

+ Ki 





d/dt Kd 



Complete PID Tuning 

 Do this smartly. 

 Start with only P.  Increase P until it Oscillates 

 Include D until the system is critically damped (no oscillation) 

 Include I to remove residual  

 

For more tips on PID tuning check:  

   Ziegler-Nichols Tuning Method 

 

https://en.wikipedia.org/wiki/Ziegler%E2%80%93Nichols_method 

 

https://en.wikipedia.org/wiki/Ziegler%E2%80%93Nichols_method


Personal Tips/Suggestion 

 Robot has inherent damping 

 Don’t bother with D 

 Design with tolerances in mind 

 Don’t bother with I.  

 In most cases I is overkill for simple applications 

 P-Control is good enough.  

 Tune P controller using potentiometer (frob knob) as gain 

 

 

K Robot 
u(t) y(t) r(t) e(t) 

Sensor 

+ 

_ 

0 100 

Kp= 


