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Overview of Lecture 

 Feed Forward Open Loop Controller 

 Pros and Cons 

 Bang-Bang Closed Loop Controller 

 Intro to PID Closed Loop Control 

 Proportional Control 

 Proportional-Integral Control 

 Proportional-Derivative Control 

 Proportional-Integral-Derivative Control 

 Personal Tips and Suggestions 

 

 

 

 

 



Feed Forward / Open Loop Controller 

 Room Lightswitch 

 Water Faucet 

 Time Based Toaster 

 

Examples 

 Set Stock Servo Motor Position 

 Setting PWM on motor 

 

Robot Examples 



Feed Forward / Open Loop Controller 

 Given a reference input, multiply it by a gain, K. 

 Apply controller output to robot 

K Robot 

u(t) y(t) r(t) 

r(t) – Reference Input     (eg: Voltage, Desired Angle/Speed)  

K   – Gain         (Some Units)      

u(t) – Controller Output     

y(t) -  Plant Output     (eg: Actual Angle/Speed) 

 



Feed Forward / Open Loop Controller 

 Pros 

 Simple to Implement 

 If everything is known, controller can be reliable 

 Cons: 

 Robot does not know if the desired output is reached 

 Not robust under variable loading 

K Robot 

u(t) y(t) r(t) 



Bang-Bang Closed Loop Controller 

 Example: Thermostat (ON until warm temperature is reached) 

 Sensor Information Dictates Action 

 Not good for navigation 

 

 

 

Is There 

yet? 
Output 

u(t) y(t) r(t) 

Sensor 

u(t) – On/OFF 



Closed Loop Control: Proportional Controller 

 Use sensor information to dictate action 

 Use negative feedback to minimize error e(t)  



e(t)  r(t)  y(t)

K Robot 
u(t) y(t) r(t) e(t) 

Sensor 

+ 

_ 



Proportional Controller Example 

 Suppose we want a robot to turn to a particular angle 

  

 



r(t) desired

y(t) actual

e(t) desired actual

u(t)  k(desired actual)

K Robot 
u(t) y(t) e(t) 

Sensor 

+ 

_ 



actual


desired



actual



desired



Proportional Controller Example 
 Remember, we are trying to minimize e(t). Suppose k = 10 

 As error increases, u(t) puts more effort to achieve desired angle 

 As error decreases, u(t) puts less effort to achieve desired angle 

  

 



e(t) desired actual



u(t)  k(desired actual)



actual



desired



actual



desired



actual



desired



e  (0  /4)



u 10( /4)



u 10( /6)



Issues with Proportional Controller 

 Tuning the gain K: 

 We want high K to reach desired output but… 

 K can’t be too “stiff” (Overshoots like an undamped spring) 

 K can’t be too “soft” (K is too small to move the robot) 

 Thus, desired output is never reached 

 

 



u(t)  k(desired actual)



u(t)  kx



actual



desired

Looks like Hooke’s Law… 



Proportional-Integral (PI) Controller 

 “Integral” Essential Concept: Accumulate all error and 

get rid of it  

 Add a integral term to get rid of error 



u(t)  kpe(t) ki e(t)

Kp 

Robot 
u(t) y(t) 

r(t) 
e(t) 

Sensor 

+ 

_ 

+ Ki 



PI Controller Example 

 “Integral” Essential Concept: Accumulate all error and 
get rid of it  

 Integral will accumulate both positive and negative error 

 This slowly disappears given appropriate values of ki 



u(t)  kpe(t) ki e(t)

actual



desired



PI Controller Issue 

 Integral term can wind up forever. 

 Suppose robot wants to reach a certain desired angle, but 
something is blocking it. 

 What happens to integral term? How might you solve this? 



u(t)  kpe(t) ki e(t)


actual



desired



Proportional-Derivative (PD) Controller 

 “Derivative” Essential Concept: If controller didn’t 
change fast enough, apply some extra effort 

 Add a derivative term to act as a damper 



u(t)  kpe(t) kd
d

dt
e(t)

Kp 

Robot 
u(t) y(t) 

r(t) 
e(t) 

Sensor 

+ 

_ 

+ d/dt Kd 



PD Control Example 

 Suppose you are making a line-follower robot: 

 Consider two types of Kp… 

Sharp Turn has no P-Controller 

Solution/ 

Low Kp – Robot misses turn 

High Kp – Overshoots and misses next line 



PD Control Example 

 Problem: We want a really high Kp to reach desired output 

 Issue: Robot Overshoots 

 Using “D-controller” as Damper  

 



u(t)  kpe(t) kd
d

dt
e(t)



actual



desired



Solution: Use “D” on top of “P” 

Image from wikipedia:  https://en.wikipedia.org/wiki/File:Change_with_Kd.png 

 

https://en.wikipedia.org/wiki/File:Change_with_Kd.png


Complete PID Controller 

 P  – Proportional (Spring) term to reach goal 

 I   – Integral term to remove residual error 

 D – Derivative term to add damping 



u(t)  kpe(t) kd
d

dt
e(t) ki e(t)

Kp 

Robot 
u(t) y(t) 

r(t) 
e(t) 

Sensor 

+ 

_ 

+ Ki 





d/dt Kd 



Complete PID Tuning 

 Do this smartly. 

 Start with only P.  Increase P until it Oscillates 

 Include D until the system is critically damped (no oscillation) 

 Include I to remove residual  

 

For more tips on PID tuning check:  

   Ziegler-Nichols Tuning Method 

 

https://en.wikipedia.org/wiki/Ziegler%E2%80%93Nichols_method 

 

https://en.wikipedia.org/wiki/Ziegler%E2%80%93Nichols_method


Personal Tips/Suggestion 

 Robot has inherent damping 

 Don’t bother with D 

 Design with tolerances in mind 

 Don’t bother with I.  

 In most cases I is overkill for simple applications 

 P-Control is good enough.  

 Tune P controller using potentiometer (frob knob) as gain 

 

 

K Robot 
u(t) y(t) r(t) e(t) 

Sensor 

+ 

_ 

0 100 

Kp= 


