
6.270 Lecture

Steven Jorgensen

Massachusetts Institute of Technology

January 2014

Control Systems

Overview of Lecture

 Feed Forward Open Loop Controller

 Pros and Cons

 Bang-Bang Closed Loop Controller

 Intro to PID Closed Loop Control

 Proportional Control

 Proportional-Integral Control

 Proportional-Derivative Control

 Proportional-Integral-Derivative Control

 Personal Tips and Suggestions

Feed Forward / Open Loop Controller

 Room Lightswitch

 Water Faucet

 Time Based Toaster

Examples

 Set Stock Servo Motor Position

 Setting PWM on motor

Robot Examples

Feed Forward / Open Loop Controller

 Given a reference input, multiply it by a gain, K.

 Apply controller output to robot

K Robot

u(t) y(t) r(t)

r(t) – Reference Input (eg: Voltage, Desired Angle/Speed)

K – Gain (Some Units)

u(t) – Controller Output

y(t) - Plant Output (eg: Actual Angle/Speed)

Feed Forward / Open Loop Controller

 Pros

 Simple to Implement

 If everything is known, controller can be reliable

 Cons:

 Robot does not know if the desired output is reached

 Not robust under variable loading

K Robot

u(t) y(t) r(t)

Bang-Bang Closed Loop Controller

 Example: Thermostat (ON until warm temperature is reached)

 Sensor Information Dictates Action

 Not good for navigation

Is There

yet?
Output

u(t) y(t) r(t)

Sensor

u(t) – On/OFF

Closed Loop Control: Proportional Controller

 Use sensor information to dictate action

 Use negative feedback to minimize error e(t)



e(t)  r(t)  y(t)

K Robot
u(t) y(t) r(t) e(t)

Sensor

+

_

Proportional Controller Example

 Suppose we want a robot to turn to a particular angle



r(t) desired

y(t) actual

e(t) desired actual

u(t)  k(desired actual)

K Robot
u(t) y(t) e(t)

Sensor

+

_



actual


desired



actual



desired

Proportional Controller Example
 Remember, we are trying to minimize e(t). Suppose k = 10

 As error increases, u(t) puts more effort to achieve desired angle

 As error decreases, u(t) puts less effort to achieve desired angle



e(t) desired actual



u(t)  k(desired actual)



actual



desired



actual



desired



actual



desired



e  (0  /4)



u 10( /4)



u 10( /6)

Issues with Proportional Controller

 Tuning the gain K:

 We want high K to reach desired output but…

 K can’t be too “stiff” (Overshoots like an undamped spring)

 K can’t be too “soft” (K is too small to move the robot)

 Thus, desired output is never reached



u(t)  k(desired actual)



u(t)  kx



actual



desired

Looks like Hooke’s Law…

Proportional-Integral (PI) Controller

 “Integral” Essential Concept: Accumulate all error and

get rid of it

 Add a integral term to get rid of error



u(t)  kpe(t) ki e(t)

Kp

Robot
u(t) y(t)

r(t)
e(t)

Sensor

+

_

+ Ki 

PI Controller Example

 “Integral” Essential Concept: Accumulate all error and
get rid of it

 Integral will accumulate both positive and negative error

 This slowly disappears given appropriate values of ki



u(t)  kpe(t) ki e(t)

actual



desired

PI Controller Issue

 Integral term can wind up forever.

 Suppose robot wants to reach a certain desired angle, but
something is blocking it.

 What happens to integral term? How might you solve this?



u(t)  kpe(t) ki e(t)


actual



desired

Proportional-Derivative (PD) Controller

 “Derivative” Essential Concept: If controller didn’t
change fast enough, apply some extra effort

 Add a derivative term to act as a damper



u(t)  kpe(t) kd
d

dt
e(t)

Kp

Robot
u(t) y(t)

r(t)
e(t)

Sensor

+

_

+ d/dt Kd

PD Control Example

 Suppose you are making a line-follower robot:

 Consider two types of Kp…

Sharp Turn has no P-Controller

Solution/

Low Kp – Robot misses turn

High Kp – Overshoots and misses next line

PD Control Example

 Problem: We want a really high Kp to reach desired output

 Issue: Robot Overshoots

 Using “D-controller” as Damper



u(t)  kpe(t) kd
d

dt
e(t)



actual



desired

Solution: Use “D” on top of “P”

Image from wikipedia: https://en.wikipedia.org/wiki/File:Change_with_Kd.png

https://en.wikipedia.org/wiki/File:Change_with_Kd.png

Complete PID Controller

 P – Proportional (Spring) term to reach goal

 I – Integral term to remove residual error

 D – Derivative term to add damping



u(t)  kpe(t) kd
d

dt
e(t) ki e(t)

Kp

Robot
u(t) y(t)

r(t)
e(t)

Sensor

+

_

+ Ki





d/dt Kd

Complete PID Tuning

 Do this smartly.

 Start with only P. Increase P until it Oscillates

 Include D until the system is critically damped (no oscillation)

 Include I to remove residual

For more tips on PID tuning check:

 Ziegler-Nichols Tuning Method

https://en.wikipedia.org/wiki/Ziegler%E2%80%93Nichols_method

https://en.wikipedia.org/wiki/Ziegler%E2%80%93Nichols_method

Personal Tips/Suggestion

 Robot has inherent damping

 Don’t bother with D

 Design with tolerances in mind

 Don’t bother with I.

 In most cases I is overkill for simple applications

 P-Control is good enough.

 Tune P controller using potentiometer (frob knob) as gain

K Robot
u(t) y(t) r(t) e(t)

Sensor

+

_

0 100

Kp=

